- Philippe.Pegon@crc.u-strasbg.fr
- Christophe.Saillard@crc.u-strasbg.fr

Objectif

- Savoir répondre à cette question :
 - Comment font 2 ordinateurs en réseau pour communiquer ?
- Organisation des TP-TD
 - TD : Approfondissement des notions vues en cours et préparation des TP
 - TP : Mise en pratique

Evaluation

- Un examen écrit lors du TD de la semaine du 20/03
- Un TP noté, date communiquée une semaine avant
- Prise en compte de la présence en TP

Planning Prévisionnel TD/TP

Semaine	ТР	TD	
27/02/06		- Intro (planning, évaluations) - Préparation TP1/TP2	
06/03/06	TP 1 : Prise en main Cisco	- CSMA/CD - Bridging / STP	
13/03/06	TP 2 : Prise en main Windows / Linux	- Modèle en couche (CIDR, classes d'adresse, plan d'adressage etc.)	
20/03/06	TP 3 : Bridging / STP	Exam	
27/03/06	TP 4 : Capture, Analyse protocoles et entêtes (IP/ARP/ICMP)	- Routage / Routeur	
03/04/06	TP 5 : Routage statique (traceroute)	- Routage dynamique	
10/04/06	TP 6 : Routage dynamique	- lpv6	
Vacances			
24/04/06	TP 7 : lpv6 (autoconf, capture ICMP)	Prépa partiel / Visite salle machine	

TP1 : Prise en main d'un routeur Cisco
TP2 : Réseau sous Linux et Windows
Objectif de ces 2 TP

Acquérir les bases pour les TP suivants

Un routeur à quoi ça sert ? Permettre au PC1 de dialoguer avec le PC2

Un routeur à quoi ça sert ?

Un routeur à quoi ça sert ? Le routeur D tombe en panne

Un routeur à quoi ça sert ? Le chemin est recalculé

Un routeur, plusieurs interfaces

RLI 2005-2006

Les routeurs de TP Cisco 2600

Généralités sur les équipements Cisco

 Port Console : accès administratif local à partir d'un terminal ASCII ou d'une émulation de terminal (Hyperterminal sous Windows, Minicom sous Unix.) A relier au port série de votre ordinateur.

Généralités sur les équipements Cisco

- Acronymes de base Cisco
 - IOS (Internetwork Operating System), c'est l'OS de tous les équipements Cisco
 - **CLI** (*Command Line Interface*), désigne l'interface en ligne de commande.
 - Types de mémoires
 - **DRAM** (volatile)
 - **NVRAM** (non-volatile)
 - **Flash** (non-volatile)
 - **ROM** (non-volatile)

Généralités sur les équipements Cisco

- Séquence d'initialisation d'un routeur
 - Chargement du boostrap de ROM vers DRAM
 - Test de la plate-forme
 - Chargement de l'IOS de Flash vers DRAM
 - Chargement de la config de NVRAM vers DRAM

Configurer le routeur

- Connexion via le port console
 - Via un terminal vt100 ou émulation (Hyperterminal/Minicom)
 - Paramétrage :
 - Vitesse : 9600 bps
 - Taille : 8 bits
 - Parité : non
 - Bit d'arret : 1
 - Controle de flux: non

Configurer le routeur

- Navigation et Configuration
 - Pour obtenir la liste des commandes, taper : ?
 - « ? » permet aussi de compléter une commande.

Switch> ping ?

WORD Ping destination address or hostname

ip IP echo

tag Tag encapsulated IP echo

 La « complétion » des commandes se fait avec la touche <TAB>.

- Si le résultat d'une commande dépasse la taille du terminal
 - Appuyer sur **entrée** pour voir la suite ligne par ligne
 - Appuyer sur la **barre espace** pour voir la suite **page par page**.

Configurer le routeur

Les différents modes de configuration

Mode

Prompt visuel

- Mode utilisateur
- Mode privilégié
- Mode Configuration
- Mode Configuration Objet

router> router# router(config)# router(config-if)#

Configurer le routeur

- Exemple 1 : se connecter et configurer une interface
 - Etape 1 : connexion via la port console
 - Prompt routeur>
 - Etape 2 : On tape « enable » puis on saisit le mdp
 - Prompt routeur#
 - Etape 3 : On tape « configure terminal »
 - Prompt routeur(config)#
 - Etape 4 : On tape « interface X »
 - Prompt routeur(config-if)#

Configurer le routeur

- Gérer la configuration
 - Se mettre en mode enable
 - Voir la configuration active, running-config (DRAM) router# show running-config
 - Voir la configuration de démarrage, startup-config: router# show startup-config
 - Copie de la conf courante vers la conf de démarrage router# copy running-config startup-config

> A faire après chaque modification de configuration > On peut également taper « write mem »

RLI 2005-2006

Configurer le routeur

- Le système de fichier
 - Pour tout visualiser taper : router> dir all-filesystems
 - Copier un fichier:

router# copy flash:/config.text flash:/config.origine

• Renommer un fichier:

router# rename flash:/<ancien_nom> flash:/<nouveau_nom>

• Supprimer un fichier:

router# delete flash:/<fichier>

Configurer le routeur Pour chaque TP

Identifiants par défaut

- Login : Cisco
- Password : Cisco
- Important : ne les changez surtout pas !
- Démarrer sur une configuration vierge
 - En mode enable
 - Supprimer la config de démarrage routeur# erase startup-config
 - Redémarrer le routeur routeur# reload
 - Après le reboot répondre 'no' à l'assistant de configuration

Configurer le routeur

- Définir un nom routeur(config)# hostname <nom du routeur>
- Ajouter une passerelle par défaut routeur(config)# ip default gateway A.B.C.D

Activer la résolution de nom routeur(config)# ip domain-lookup routeur(config)# ip domain-name u-strasbg.fr routeur(config)# ip name-server 130.79.200.1

Configurer le routeur

- Affecter une adresse IP à une interface
 - On se déplace dans le menu de l'interface
 Router(config)# interface ethernet X
 - On spécifie l'adresse IP et le masque associé
 Router(config-if)# ip address A.B.C.D E.F.G.H

On active l'interface Router(config-if)# no shutdown

- Remarque générale Cisco
 - Pour annuler une commande on tape « no » devant
 - Ex :
 - ip address A.B.C.D E.F.G.H pour affecter l'adresse
 - no ip address A.B.C.D E.F.G.H pour la supprimer

Configurer le routeur

- La configuration à distance
 - Avec un serveur de terminal (relié au port console du routeur)
 - Par Telnet ou SSH
 - Authentification nécessaire
 - 1. Chiffrer les mots de passes dans la configuration router(config)# service password-encryption
 - Offinir un mot de passe pour les terminaux « virtuels » (de 0 à 4) router(config)# line vty 0 4 router(config)# password <mot de passe> router(config)# login
 - Output is a second s
 - 4. Sur votre poste de travail : telnet <ip routeur>

Configurer le routeur

Enregistrer / charger une configuration par tftp routeur# copy startup-config tftp:

Configurer le routeur

- Diagnostiquer un problème
 - Tester la connectivité avec la commande ping
 - Consulter la configuration router# show running-configuration
 - Consulter les logs router# show logging
 - Consulter l'état d'une interface router# show interface X
 - Quel est l'OS du routeur, quelles sont ses caractéristiques router# show version router# show system

TP Linux / Windows

- Interfaces réseaux
 - Nommage des interfaces
 - Etat du lien physique
 - Configurer / Visualiser une adresse IP sur une interface
 - Ajouter d'un alias à une interface
- Configurer / Visualiser les routes
- Configurer le résolveur de nom (DNS)
- Consultation de la table arp
- Vérifier la connectivité vers une machine
- Tracer le chemin vers une machine
- Capturer le trafic

Linux : interfaces réseaux (1)

Interfaces physiques nommées eth0, eth1 ...

- ethtool permet de visualiser l'état d'un lien
 - câble connecté / déconnecté

```
vitesse debi:~# echcoor constrained debi:~# echcoor constr
                                                                 debi:~# ethtool eth0
 duplex
                                                                                                        Supported ports: [ MII ]
                                                                                                        Supported link modes:
                                                                                                                                                                                                                       10baseT/Half 10baseT/Full
                                                                                                                                                                                                                       100baseT/Half 100baseT/Full
                                                                                                                                                                                                                       1000baseT/Half 1000baseT/Full
                                                                                                        Supports auto-negotiation: Yes
                                                                                                        Advertised link modes:
                                                                                                                                                                                                                       10baseT/Half 10baseT/Full
                                                                                                                                                                                                                       100baseT/Half 100baseT/Full
                                                                                                                                                                                                                       1000baseT/Half 1000baseT/Full
                                                                                                       Advertised auto-negotiation: Yes
                                                                                                        Speed: 100Mb/s
                                                                                                       Duplex: Full
                                                                                                       Port: Twisted Pair
                                                                                                        PHYAD: 1
                                                                                                        Transceiver: internal
                                                                                                       Auto-negotiation: on
                                                                                                        Supports Wake-on: q
                                                                                                        Wake-on: d
                                                                                                        Current message level: 0x00000ff (255)
                                                                                                       Link detected: yes
                                                                                                                                                                                                                                                                                                                                                         29/42
                                                                                                                                                             RLI 2005-2006
```

Linux : interfaces réseaux (2)

Commande *ifconfig* pour visualiser

debi:~# ifconfig eth0

eth0

```
Link encap:Ethernet HWaddr 00:16:3E:7F:21:6D
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0 MiB) TX bytes:0 (0 MiB)
```

pour configurer un adresse IP

```
debi:~# ifconfig eth0 192.168.1.1 netmask 255.255.255.0
debi:~# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:16:3E:7F:21:6D
inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:61488 errors:0 dropped:0 overruns:0 frame:0
TX packets:54819 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:36743162 (35.0 MiB) TX bytes:19210934 (18.3 MiB)
```

Linux : interfaces réseaux (3)

Interface lo spéciale (loopback)

- toujours présente
- nécessaire pour les communications internes de l'OS
- adresse IP de loopback : 127.0.0.1

```
debi:~# ifconfig lo
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:33301 errors:0 dropped:0 overruns:0 frame:0
TX packets:33301 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:15973077 (15.2 MiB) TX bytes:15973077 (15.2 MiB)
```

Linux : interfaces réseaux (4)

alias sur une interface

permet d'avoir plusieurs adresses IP sur une même interface physique

debi:~# ifconfig eth0:1 192.168.1.3 netmask 255.255.255.0 debi:~# ifconfig Link encap:Ethernet HWaddr 00:16:3E:7F:21:6D eth0 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:79152 errors:0 dropped:0 overruns:0 frame:0 TX packets:72733 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:38490380 (36.7 MiB) TX bytes:24477322 (23.3 MiB) Link encap:Ethernet HWaddr 00:16:3E:7F:21:6D eth0:1 inet addr:192.168.1.3 Bcast:192.168.1.255 Mask:255.255.255.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 Link encap:Local Loopback 10 inet addr:127.0.0.1 Mask:255.0.0.0 UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:38970 errors:0 dropped:0 overruns:0 frame:0 TX packets:38970 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:19033725 (18.1 MiB) TX bytes:19033725 (18.1 MiB) 05/02/2006 RLI 2005-2006

Windows : interfaces réseaux

En mode texte

ipconfig

- visualiser l'adresse IP
- visualiser l'état du lien
- netsh
 - ligne de commande (cli)
 - permet de faire toutes les opérations relatives au réseau
 - traduction en français le rend difficilement utilisable
 - peu intuitif
- En mode graphique
 - vous savez tous faire...

Linux : routes

Commande *route*

permet d'ajouter une route

debi:~# route add -net 0.0.0.0 netmask 0.0.0.0 gw 192.168.1.1

• ou équivalent (pour la route par défaut)

debi:~# route add default gw 192.168.1.1

permet de visualiser les routes

debi:~# route Kernel IP routing table Flags Metric Ref Use Iface Destination Gateway Genmask 192,168,1,0 * 255,255,255,0 0 0 eth 00 IJ 192.168.1.1 default 0.0.0.0 UG 0 0 0 eth0

```
route sous Windows
```

Linux : fichier de configuration

- Ces modifications ne sont pas gardées après reboot
- Chaque distribution Linux a des fichiers de configuration différents

Sous Debian

```
debi:~# cat /etc/network/interfaces
# Used by ifup(8) and ifdown(8). See the interfaces(5) manpage
or
# /usr/share/doc/ifupdown/examples for more information.
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static
    address 192.168.1.2
    network 192.168.1.0
    netmask 255.255.255.0
    broadcast 192.168.1.255
    gateway 192.168.1.1
```

Linux : configuration DNS

Permet de résoudre non -> adresse IP (et l'inverse)

Fichier /etc/resolv.conf

debi:~# cat /etc/resolv.conf
search u-strasbg.fr
nameserver 192.168.1.1

Commande nslookup

debi:~# nslookup www.google.fr
Server: 192.168.1.1
Address: 192.168.1.1#53

Non-authoritative answer: www.google.fr canonical name = www.google.com. Name: www.google.com Address: 66.249.93.104

Linux / Windows : table arp

Commande arp sous Linux et Windows

permet de consulter la table arp

```
debi:~# arp -a
? (192.168.1.1) at 00:16:3E:3B:93:ED [ether] on eth0
```

permet de « nettoyer » la table arp

```
debi:~# arp -d 192.168.0.1
debi:~# arp -a
debi:~#
```

Linux / Windows : connectivité

Commande *ping* sous Linux et Windows

- permet de vérifier la connectivité d'une machine
- visualiser les délais de transmission

debi:~# ping -c 5 192.168.0.101
PING 192.168.0.101 (192.168.0.101) 56(84) bytes of data.
64 bytes from 192.168.0.101: icmp_seq=1 ttl=63 time=1.72 ms
64 bytes from 192.168.0.101: icmp_seq=2 ttl=63 time=0.771 ms
64 bytes from 192.168.0.101: icmp_seq=3 ttl=63 time=0.758 ms
64 bytes from 192.168.0.101: icmp_seq=4 ttl=63 time=0.804 ms
64 bytes from 192.168.0.101: icmp_seq=5 ttl=63 time=0.861 ms

--- 192.168.0.101 ping statistics ---5 packets transmitted, 5 received, 0% packet loss, time 4011ms rtt min/avg/max/mdev = 0.758/0.984/1.728/0.374 ms

Linux / Windows : traceroute

- Commande traceroute sous Linux
 - permet tracer le chemin vers une machine
 - visualiser les délais vers chaque saut

```
debi:~# traceroute -n 192.168.0.101
traceroute to 192.168.0.101 (192.168.0.101), 30 hops max, 38 byte
packets
```

- 1 192.168.1.1 1.200 ms 0.936 ms 0.690 ms
- 2 192.168.0.101 1.360 ms 1.096 ms 1.317 ms
- Commande *tracert* sous Windows
 - équivalente au traceroute de Linux

Linux : capture du trafic (1)

la libcap permet de capturer du trafic en mode texte : *tcpdump*

debi:~# tcpdump -ni eth0

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes 00:19:52.639172 IP 192.168.1.2.22 > 192.168.0.101.33120: P 3481995539:3481995651(112) ack 796527980 win 2896 <nop,nop,timestamp 12616364 695519085> 00:19:52.641078 IP 192.168.1.2.22 > 192.168.0.101.33120: P 112:224(112) ack 1 win 2896 <nop,nop,timestamp 12616364 695519085>

• • •

70 packets captured 92 packets received by filter 0 packets dropped by kernel

Linux : capture du trafic (2)

en mode graphique : ethereal

Ø	(Untitled) -	Ethereal <@debi>		_ – ×			
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o	<u>Capture Analyze Statisti</u>	cs <u>H</u> elp					
😰 🗁 🔚 🗙	r + + 1	轮 🚡 🕹 🕀 🤅	2, Q 🏴 🗓	🖺 💥 i 🔯			
Eilter:							
No Time	Source	Destination	'rotocol Info	<u> </u>			
1 0.000000	192.168.1.2	192.168.0.101	SSH Encrypted	response packe —			
2 0.000497	192.168.1.2	192.168.0.101	SSH Encrypted	response packe			
3 0.000542	192.168.0.101	192.168.1.2	TCP 34885 > s	sh [ACK] Seq=0			
4 0.000568	192.168.0.101	192.168.1.2	SSH Encrypted	request packet			
5 0.000594	192.168.0.101	192.168.1.2	SSH Encrypted	request packet			
7 0 001107	192,100,1,2	192,108,0,101	SSH Encrypted	request packet			
8 0 001226	192.168.1.2	192,108,1,2	SSH Encrypted	response packe			
•			1				
b France 1 (1514 button	an vine 1514 butes cont	hunged \					
N Ethornot IT Sec. 6	0.16.20.7f.21.6d Det. 0	Dulley 20, 20, 02, od					
Filtermet II, Src: 00:10:3e:71:21:00, DSI: 00:10:3e:3D:93:e0							
Version: 4							
Header length: 20 hytes							
b Differentiated Services Field: 0x10 (DSCP 0x04: Unknown DSCP: ECN: 0x00)							
Total Length: 1500							
Identification: 0x93d8 (37848)							
► Flags: 0x04 (Don't Fragment)							
•				•			
0000 00 16 3e 3b 93 e	ed 00 16 3e 7f 21 6d 08	00 45 10>:	F				
0010 05 dc 93 d8 40 0	00 40 06 le 7c c0 a8 01	02 c0 a8@.@					
0020 00 65 00 16 88 4	15 ed 26 b2 89 4d eb 26	d8 80 10 .eE.&M.&	<u>s</u>				
0030 10 f8 90 50 00 0	00 01 01 08 0a 00 c0 bc	ad 29 77P)w				
10040 0b 51 73 69 9d c	16 db 58 5d 0† 3d a4 20						
Jinternet Protocol (ip), 20 bytes JP: 125 D: 125 M: 0							

Windows : capture du trafic

- Ia lib winpcap permet de capturer du trafic
- windump permet de faire « l'équivalent » de tcpdump sous Linux
 - http://www.winpcap.org/windump/